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A method for estimating aeroelastic stability and control derivatives for flexible aircraft
is developed and demonstrated using flight test data for the X-56A subscale demonstrator.
The method uses the equation-error approach with frequency-domain data, and can be
applied post-flight or in real time during flight. The nondimensional aeroelastic forces
and moments and the explanatory variables (including generalized displacement, rate, and
acceleration states for the vibration modes) are estimated using a finite element model
and onboard sensor measurements in both a least squares and Kalman filtering framework.
The data are then transformed into the frequency domain for parameter estimation using
equation error. This method can result in a more efficient analysis than with other iterative
methods, and can leverage existing statistical tools for model structure determination, data
collinearity detection, combining multiple maneuvers or prior information, and others to
improve model quality.

Nomenclature

CD, CY , CL stability-axis force coefficients
CDw , CYw wind-axis force coefficients
Cl, Cm, Cn body-axis moment coefficients
CQ generalized modal force coefficients
c̄ mean aerodynamic chord, ft
j imaginary number, =

√
−1

p, q, r angular rates, rad/s
q̄ dynamic pressure, lbf/ft2

< real part
S wing reference area, ft2

x, y, z body-axis coordinates, ft
∆t sampling interval, s
α angle of attack, rad
β sideslip angle, rad
δ control surface deflection, rad

φ, θ, ψ Euler angles, rad
µ flank angle, rad
σ standard deviation

Subscripts
eq equivalent value

Superscripts
−1 matrix inverse
T transpose
˙ time derivative
† complex conjugate transpose
ˆ estimated value
˜ error
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I. Introduction

The recent resurgence of interest in flexible aircraft is in part due to the potential improvements in fuel
economy, aerodynamic efficiency, range and endurance, noise reduction, ride quality, and other perfor-

mance metrics. For example, the NASA Advanced Air Transport Technology (AATT) Project currently aims
to mature modeling and control technologies using the X-56A Multi-Utility Technology Testbed (MUTT)
for active flutter suppression and gust load alleviation [1]. System identification and parameter estimation
can support this goal by supplying aerodynamic models identified from flight test data to verify existing
simulation models and update aerodynamic databases for flight control design.

Although examples of system identification for flexible aircraft are relatively few [2], recent works [3–
6] have all employed the model proposed in Ref. [7], which extended flight dynamics models based on
quasi-steady stability and control derivatives to flexible aircraft. One reason for this comparatively small
number of system identification examples could be the relative difficultly in identifying aeroelastic systems.
To start, the dynamic models are significantly larger and more complex than for traditional aircraft. If
nonlinear estimators are used, such as the output-error approach [8, 9], good starting values are needed for
the many unknown parameters to achieve convergence. Although rigid-body derivatives may be predicted
well using traditional analysis or experiment, the numerous aeroelastic coupling derivatives are less intuitive
and may require a numerical aerodynamic analysis with a finite element model (FEM) for prediction. Also,
determining which model parameters should be included in the model requires time-consuming iteration.
For flight test, numerous additional sensors, and sometimes actuators, are needed to observe the aeroelastic
interactions, thereby increasing the cost and complexity of the test aircraft. Additionally, longer data records
and more careful experiment designs are needed to collect enough information to accurately estimate each
of the important aeroelastic derivatives.

With few exceptions, the equation-error approach for parameter estimation has seldom been applied
to flexible aircraft. One explanation for this is that equation error requires accurate measurements of the
aeroelastic forces and moments and the explanatory variables; however, mean-axis and structural states are
confounded together in the sensor measurements and not easily separated for analysis [10, 11]. In addi-
tion, many structural modes can participate in the aircraft response, which requires many redundant and
distributed sensors and actuators to gain sufficient resolution on the vibration modes.

Turning this problem around, if information on the structural states could be reconstructed from sensor
measurements, then the forces, moments, and explanatory variables could be obtained for use in an equation-
error analysis. The advantage of this approach is that the solution for the optimal parameter estimates is
deterministic and does not require iteration or good starting values, which leads to a more efficient analysis.
Additionally, forces and moments are examined separately, instead of at the same time, which helps to break
the modeling task into smaller, more manageable parts. Many tools from regression analysis are available to
the analyst, such as for model structure determination, data collinearity detection, and sensitivity analysis.
Applied in the frequency domain, equation error automatically rejects noise and removes bias parameters,
which improves results and simplifies the estimation problem. Furthermore, applying equation error in the
frequency domain enables real-time estimation, which can provide modeling results during flight, predict
flutter, monitor stability margins during envelope expansion tests, and judge maneuver quality.

This paper presents a framework for applying equation error with flexible aircraft in both batch and real-
time analyses. Least-squares estimators are used to estimate generalized modal displacements, rates, and
accelerations from relevant onboard sensor data. A Kalman filter is then applied to improve these estimates
and enforce kinematic consistency. Afterwards, aeroelastic forces and moments and the explanatory variables
are computed from measured data for estimation using equation-error. Section II describes the equation-
error method for estimating model parameters using frequency-domain data, both as a batch, post-flight
procedure and in real time during flight. Section III introduces the flexible aircraft model used for system
identification. Section IV presents the method for reducing the measurements to enable estimation with
equation error. Next, Section V describes the X-56A airplane and flight tests, with identification results
presented in Section VI. Concluding remarks are given in Section VII.

Due to ITAR restrictions associated with the X-56A airplane, numerical values are not given in this
paper; however, the method is general and not specific to the X-56A airplane. Computer software for the
multisine input design, Fourier transforms, model structure determination, and both batch and real-time
equation-error parameter estimation used are available in a MATLAB R© toolbox called System IDentification
Programs for AirCraft [12], which is associated with Ref. [9].
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II. Parameter Estimation

II.A. The Equation-Error Approach

This section briefly summarizes the equation-error method for parameter estimation, using frequency-
domain data. For more information on the method, see Refs. [9,13]. The equation-error method results from
simplifying the Maximum Likelihood estimator for the case when there is process noise but no measurement
noise. In this case the estimation reduces to the least-squares problem

z = Xθ + v (1)

The variable z is a vector of measured or computed data to be modeled. The regressor matrix X assembles
column vectors of explanatory variables. The vector θ contains the unknown model parameters. Lastly, v
is a vector of equation errors that are assumed to be zero mean, normally distributed, and spectrally white.

The ordinary least squares cost function

J(θ) =
1

2
(z−Xθ)

†
(z−Xθ) (2)

is the sum of squared errors between the data and the model output for that data. The optimal solution for
the model parameters is

θ̂ =
[
<
(
X†X

)]−1<
(
X†z

)
(3)

with covariance
cov(θ̂) = σ2

[
<
(
X†X

)]−1
(4)

where σ2 is the equation-error variance. The equation-error variance σ2 is usually estimated from the model
residuals as

σ̂2 =
v†v

N − np
(5)

where N is the number of data points and np is the number of parameters.
Least squares is applied several times in this paper because it is a simple and accurate estimator when

assumptions are valid. Furthermore, the solution to the least-squares problem is analytic and closed-form.
This is in contrast to nonlinear estimators, which require iteration and are not well-suited for real-time
applications. One drawback to using equation error is that all the explanatory variables must be available,
which is difficult in analysis of flexible aircraft.

II.B. Real-Time Estimation in the Frequency Domain

Equation error, as just summarized, is formulated for batch estimation after a flight test maneuver has
completed and all the data are available. This section summarizes simple changes to the method that facilitate
real-time estimation in the frequency domain. For more information on this technique, see Refs. [9, 14].

For batch, post-flight estimation, a high-accuracy Fourier transform is used to transform the measured
data into the frequency domain. During real-time estimation, however, a simplified transform is used. The
signal z(t), for example, over the time interval t ∈ [0, T ] has the following approximation to the finite Fourier
transform

F {z(t)} , z(jωk) = ∆t

N−1∑
i=0

z(ti)e
−jωkti (6)

for equally-spaced time samples ti and selected analysis frequencies ωk. The regressor matrix is transformed
similarly.

This estimation can also be performed in real time, as the aircraft is flying, using a recursive version of
the Fourier transform. Expanding Eq. (6) and regrouping terms, the transform at any time ti can be written
as the recursive relation

zi(jωk) = zi−1(jωk) + z(ti)e
−jωkti∆t (7)

As data are collected, the Fourier transforms of z and X are updated recursively in real time. Then the
least squares solution Eq. (3) and its covariance Eqs. (4)–(5) are computed. If computational resources are
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limited, the least-squares solution can be calculated at a slower rate, with the only potential drawback that
modeling results are updated less often.

If flight conditions or parameters are changing over time, data forgetting techniques can be used to devalue
older data and adapt more quickly to newer data. A simple method for this is exponential forgetting, where
the recursive Fourier transform is modified as

zi(jωk) = λzi−1(jωk) + z(ti)e
−jωkti∆t (8)

where λ is the forgetting factor, typically selected between 0.9 and 1.0.

III. Flexible Aircraft Model

This section describes the aeroelastic flight dynamics model used for a flexible aircraft. The model is
based on Ref. [7] with further elaboration in Ref. [10], and is briefly summarized here. First, the deformation
of the aircraft structure is parameterized in terms of a finite set of orthogonal vibration modes. Second, the
nondimensional forces and moments acting on the aircraft are expanded in terms of stability and control
derivatives.

III.A. Structural Deformations

The deformation of the aircraft structure is assumed to be small and within the linear elastic range. As
such, each vibration mode deforming the structure about the aircraft mean axes can be approximated as the
second-order system

η̈i + 2ζiωiη̇i + ω2
i∆ηi =

q̄Sc̄

mi
CQi (9)

The terms ηi, η̇i, and η̈i are the generalized displacement, rate, and acceleration of the ith vibration mode.
The modal constants mi, ωi, and ζi are the generalized mass, frequency, and damping ratio. The nondi-
mensional generalized force coefficient CQi quantifies the forcing on the vibration mode. Note the adjective
“modal” is used in this paper to reference the vibration modes and not, for example, the short period flight
dynamics mode.

The deformation of an arbitrary point on the aircraft from its undeformed jig shape is parameterized
using the mode shapes and modal displacements as

d(r, t) =

M∑
k=1

φk(r) ηk(t)

= φ1η1 + φ2η2 + . . .+ φMηM

= φkηk (10)

The vector r is the local body-fixed position of a point relative to the aircraft mass center. The vector φk
is the local mode shape describing the spatial displacement of r due to a unit displacement of ηk. Although
in theory an infinite number of vibration modes exist, only a finite set of M modes is considered in practice.
The last line of Eq. (10) shows how Einstein notation is used in this paper to economically represent sums
of modal contributions, where terms indexed by k are to be evaluated and summed from 1 to M .

The vibration modes describe free vibrations of the aircraft structure in a vacuum. The modal masses,
frequencies, damping ratios, and mode shapes may be obtained from a FEM and/or a ground vibration test
(GVT). These parameters are a function of the the layout and composition of the aircraft, and may need to be
scheduled according to other parameters, such as fuel weight. Although in flight the vibration modes couple
together as a function of dynamic pressure, they are an advantageous choice of basis functions for expressing
the structural deformation because they have physical significance and familiarity, can be measured or
modeled, and have useful orthogonality properties for flight dynamics analysis. The structural deformation
models considered here are for small displacements and elastic vibration only. The mass distribution of the
aircraft is also assumed to be not significantly affected by the deformations. When this is not the case, for
example with high altitude long endurance (HALE) aircraft, more complex structural deformation models
must be used.
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The relative amplitudes of the modal displacement, rate, and acceleration are proportional to 1, ωi, and
ω2
i , respectively [11]. For frequencies larger than 1 rad/s or about 0.16 Hz, which is the usual case for

aircraft, the amplitudes of the modal states may differ by an order of magnitude or more. Therefore it will
be assumed later that ηi < η̇i and η̇i < η̈i to simplify equations.

III.B. Aeroelastic Forces and Moments

The aeroelastic forces and moments acting on the aircraft were modeled using truncated Taylor series
expansions in the aircraft states and controls. The aerodynamic force coefficients, expanded in the stability
axes, are

CD = CD0
+ CDV

∆V

V0
+ CDα∆α+ CDq

qc̄

2V0
+ CDηk∆ηk + CDη̇k

η̇k c̄

2V0
+ CDδ∆δ (11a)

CY = CY0
+ CYβ∆β + CYp

pb

2V0
+ CYr

rb

2V0
+ CYηk∆ηk + CYη̇k

η̇kb

2V0
+ CYδ∆δ (11b)

CL = CL0 + CLV
∆V

V0
+ CLα∆α+ CLq

qc̄

2V0
+ CLηk∆ηk + CLη̇k

η̇k c̄

2V0
+ CLδ∆δ (11c)

the aerodynamic moment coefficients are

Cl = Cl0 + Clβ∆β + Clp
pb

2V0
+ Clr

rb

2V0
+ Clηk∆ηk + Clη̇k

η̇kb

2V0
+ Clδ∆δ (12a)

Cm = Cm0
+ CmV

∆V

V0
+ Cmα∆α+ Cmq

qc̄

2V0
+ Cmηk∆ηk + Cmη̇k

η̇k c̄

2V0
+ Cmδ∆δ (12b)

Cn = Cn0 + Cnβ∆β + Cnp
pb

2V0
+ Cnr

rb

2V0
+ Cnηk∆ηk + Cnη̇k

η̇kb

2V0
+ Cnδ∆δ (12c)

and the generalized force coefficients in Eq. (9) are expanded as

CQi = CQi0 + CQiV
∆V

V0
+ CQiβ∆β + CQiα∆α+ CQip

pb

2V0
+ CQiq

qc̄

2V0
+ CQir

rb

2V0

+ CQiηk
∆ηk + CQiη̇k

η̇k c̄

2V0
+ CQiδ∆δ (13)

where 0 denotes a reference condition and ∆ a perturbation. Traditional decoupling of the aircraft longitu-
dinal and lateral-directional dynamics was assumed in these models. The generalized force coefficients can
also be decoupled, depending on the mode, if the structural properties of the aircraft are not significantly
different about the axes. These aeroelastic forces and moments are similar to those for traditional rigid
aircraft models, except they include contributions from the modal displacements and rates, which couple the
structural deformation of the aircraft to the traditional rigid-body response.

IV. Estimation of Modeling Variables

In Section II, Fourier transforms and the equation-error approach were summarized. In Section III,
the structural model and aeroelastic forces and moments were defined. However, equation error is not
immediately applicable for flexible aircraft modeling because the modal states are unknown and because the
measurements contain modal contributions that must be separated to obtain the explanatory variables and
nondimensional coefficients.

This section describes an algorithm for separating the measurements into the mean axes and modal contri-
butions to facilitate accurate real-time estimation using the equation-error method in the frequency domain.
Figure 1 shows a simplified block diagram of the algorithm. In the first step, up to three separate least-
squares estimators are used to compute the modal displacements from strain and attitude data, modal rates
from airdata and gyroscope measurements, and modal accelerations from gyroscope and accelerometer data.
The nondimensional aerodynamic force coefficients are also determined from the third least squares estima-
tion. Because a modal displacement, rate, and acceleration are related through derivatives, a Kalman filter
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is then applied in the second step to improve the modal state estimates and enforce kinematic consistency.
Afterwards, the modal contributions to the measurements are removed to yield the remaining explanatory
variables. Lastly, the nondimensional generalized force coefficients and the nondimensional aerodynamic mo-
ment coefficients are computed. These computations operate recursively on the data and can be performed
as a post-flight or real-time analysis. After this procedure, equation-error parameter estimation can proceed
normally using the techniques from Section II.

Least

squares

Least

squares

Least

squares

Kalman

filter

Attitude

eqs.

Airdata

eqs.

Gyro.

eqs.

Gen.

force eqs.

Moment

eqs.

Force

eqs.

Attitudes

Strains

Airdata

Gyroscopes

Accelerometers

η

η̇

η̈

CX , CY , CZ

η

η̇

η̈

φ, θ, ψ

V, α, β

p, q, r

CQ

Cl, Cm, Cn

CD, CL

CDw , CYw

= Explanatory variables

= Nondimensional aeroelastic coefficients

Figure 1. Simplified block diagram to estimate modeling variables from measurements and other data

IV.A. Estimating Modal Displacements

Strain data, and to a lesser extent attitude data, are the onboard measurements most affected by the
modal displacements and therefore most useful in estimating these states. The output model for the strain
data is [11]

εi = ψik ηk + vεi (14)

where i = 1, 2, . . . nε indicates the strain sensor index. This equation assumes linear deformations, tempera-
ture compensation, measurement noise vεi , and no systematic errors due to calibration or other factors. The
terms ψik are the strain modes, which quantify the strain incurred at the ith sensor by a unit displacement
in ηk and can be obtained from a FEM solution.

Using many strain measurements at different points on the aircraft, a least-squares problem can be formed
and solved for the unknown modal displacements. This concept is sometimes referred to as modal filtering.
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Specifically, the data are assembled as
ε1

ε2

...

εnε

 =


ψ1

1 ψ1
2 . . . ψ1

M

ψ2
1 ψ2

2 . . . ψ2
M

...
...

. . .
...

ψnε1 ψnε2 . . . ψnεM




η1

η2

...

ηM

+


vε1

vε2

...

vεnε

 (15)

which is in the same form as the least-squares problem from Eq. (1), where the unknown parameters to be
determined at each time step are

θ =
[
η1 η2 . . . ηM

]T
(16)

Although the strain modes vary with the inertia properties of the aircraft, these can usually be assumed
constant for short durations of time so that (XTX)−1 need only be computed once for short maneuvers.
Alternatively, the strain modes can be updated with current inertia information to enable accurate estimation
over longer periods of time.

On one hand, the vibration modes included in Eq. (15) should be selected parsimoniously to avoid
over-parameterizing the model and using unnecessary computation. On the other hand, as many modes as
possible should be included to accurately capture the structural response. Mode selection can be performed
automatically using an orthogonalization procedure [9]. Alternatively, this can be done iteratively through
trial and error in a batch analysis, or the modes can be prescribed by the analyst during a real-time anal-
ysis. Because the strain modes are mutually orthogonal with respect to the modal mass matrix, correlated
regressors are not typically an issue in this estimation.

Another issue is the number of sensors to include in the analysis. To obtain a least-squares solution
for Eq. (15), at least one measurement is needed for each vibration mode considered in the analysis. More
sensors may be needed, however, to improve the estimates or if some modes are not observable to some
sensors. For reference, test articles for aeroelastic research commonly employ strain gauges on the order of
1 to 100. If fiber-optic strain sensors (FOSS) are used, the number of measurements can be on the order of
100 or 1000 per strand [15].

Attitude sensors provide the estimated orientation [11]

φi = φ+ νikφηk + vφi (17a)

θi = θ + νikθηk + vθi (17b)

ψi = ψ + νikψηk + vψi (17c)

for i = 1, 2, . . . , ne. The Euler angles φi, θi, and ψi are the observed measurements, whereas φ, θ, and ψ are
the angles for the mean axis. The terms νkφ , νkθ , νkψ are the gradients of the displacement mode shapes
along the sensor axes for a particular sensor, and are often referred to as the modal slopes. If multiple
attitude sensors are available, the least-squares problem Eq. (15) can be expanded to include the additional
attitude equations, where now the unknown parameters to be estimated are

θ =
[
φ θ ψ η1 η2 . . . ηM

]T
(18)

However, it is seldom that multiple attitude sensors are available, sampled at sufficient rates for aeroelastic
analysis, and have good observability on the modes of interest. In these cases, the attitude data should not be
included in the estimation to keep the dimension of the least-squares problem lower and save computational
resources.
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IV.B. Estimating Modal Rates

A similar process can be used to estimate the modal rates from multiple gyroscope and air-flow angle
vanes. Neglecting systematic errors, these sensors have outputs [11]

pi = p+ νikφ η̇k + vpi (19a)

qi = q + νikθ η̇k + vqi (19b)

ri = r + νikψ η̇k + vri (19c)

for i = 1, 2, . . . , ng, and

αi = α+
p yiα − q xiα + φikz η̇k

V
+ vαi (20a)

µi = β +
r xiµ − p ziµ + φiky η̇k

V
+ vµi (20b)

for i = 1, 2, . . . , nv. Three-axis gyroscopes (for p, q, and r) and air-flow angle vane pairs (for α and µ) are
assumed here, but different numbers of each sensor can also be used. The terms φikx , φiky , and φikz are the
displacement mode shapes at each of the gyroscopes and vanes. The terms x, y, and z indicate the body-axis
locations of the undeformed angle of attack and flank angle sensors. The equations for angle of attack and
flank or sideslip angle are linearizations that assume low aerodynamic flow angles, low angular rates, low
modal rates, and high airspeeds, but are sufficient for most applications. Airspeed equations are not given
because modal rates do not usually impact airspeed calculations to a significant degree, and because airspeed
stability derivatives are typically negligible for subsonic flight and were not considered in this work. The
second least-squares problem is then formed using Eqs. (19)–(20), where the unknown parameter vector to
be estimated at each time step is

θ =
[
p q r α β η̇1 η̇2 . . . η̇M

]T
(21)

Again, for short, small perturbation maneuvers, the regressor matrix is essentially constant and can be
computed once for the maneuver, or updated continuously for longer flight durations.

Estimating modal rates with this method requires redundant air-flow angle vanes and/or redundant
gyroscopes because there are more than one unknown quantity in each measurement equation. It is common
to have multiple airdata measurements, for example with airdata probes stemming from the wing tips or
vertical tail, and also multiple gyroscopes from the use of multiple inertial measurement units or inertial
navigation systems. However due to costs and maintenance issues, there are not usually many of these
sensors, as there are with strain or accelerometer sensors. As a result, only a few structural modes can
usually be estimated with this technique and it is more likely that modal rate information will be obtained
from the Kalman filter output.

IV.C. Estimating Modal Accelerations

Accelerometers are the sensors most sensitive to the modal accelerations. Output equations for accelerom-
eters are complex, nonlinear functions of the aircraft motion and deformation [11]. However, for most cases
the modal displacements and rates are at least an order of magnitude smaller than the modal accelerations
and can be neglected. Under these conditions and other mild assumptions, the outputs for accelerometers
installed along the body axes of the undeformed aircraft are [11]

g aix =
q̄S

m
CX +

XT

m
−
(
q2 + r2

)
xia + (pq − ṙ) yia + (pr + q̇) zia + φikx η̈k + vaxi (22a)

g aiy =
q̄S

m
CY + (pq + ṙ)xia −

(
p2 + r2

)
yia + (qr − ṗ) zia + φiky η̈k + vayi (22b)

g aiz =
q̄S

m
CZ + (pr − q̇)xia + (qr + ṗ) yia −

(
p2 + q2

)
zia + φikz η̈k + vazi (22c)
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for i = 1, 2, . . . , na. Three-axis accelerometers are assumed here but different numbers of accelerometers can
also be used. The constant g is the acceleration due to gravity, XT is the propulsive thrust aligned with the
body x-axis, and xia, yia, and zia are the body-fixed positions of the accelerometer. Accelerometer outputs
are usually calibrated in g-units, but here the g conversion factor remains on the left side for convenience.
If needed, other components of thrust can be included.

Equation (22) can be rearranged to form a third least-squares problem for the unknown nondimensional
aerodynamic force coefficients and modal accelerations as

g aix −
XT

m
+
(
q2 + r2

)
xia − (pq − ṙ) yia − (pr + q̇) zia =

q̄S

m
CX + φikx η̈k (23a)

g aiy − (pq + ṙ)xia +
(
p2 + r2

)
yia − (qr − ṗ) zia =

q̄S

m
CY + φiky η̈k (23b)

g aiz − (pr − q̇)xia − (qr + ṗ) yia +
(
p2 + q2

)
zia =

q̄S

m
CZ + φikz η̈k (23c)

Measured data is substituted in the left side of Eq. (23) and the unknown parameters

θ =
[
CX CY CZ η̈1 η̈2 . . . η̈M

]T
(24)

appearing on the right side of the equation are estimated at each time step. Unlike the analysis of traditional
rigid-body models where a single accelerometer triad is used to compute the nondimensional aerodynamic
force coefficients, these variables are instead estimated (simultaneously with the modal accelerations) using
many accelerometers in the analysis of flexible aircraft because each of the accelerometer outputs contain
contributions from the modal accelerations.

Unless modal rates were estimated, as in Section IV.B, data for the mean-axis angular rates p, q, and r
are not available and the gyroscope measurements need to be used instead. However, directly substituting
these measurements introduces additional modal accelerations into the equation, as seen from differentiation
of Eq. (19) with respect to time. Because the modal accelerations are to be estimated, the equations can
simply be rearranged again as

g aix −
XT

m
+
[
(qj)2 + (rj)2

]
xia −

(
pjqj − ṙj

)
yia −

(
pjrj + q̇j

)
zia

=
q̄S

m
CX + (φikx + νjkψy

i
a − ν

j
kθ
zia)η̈k + vaxi (25a)

g aiy −
(
pjqj + ṙj

)
xia +

[
(pj)2 + (rj)2

]
yia −

(
qjrj − ṗj

)
zia

=
q̄S

m
CY + (φiky − ν

j
kψ
xia + νjkφz

i
a)η̈k + vayi (25b)

g aiz −
(
pjrj − q̇j

)
xia −

(
qjrj + ṗj

)
yia +

[
(pj)2 + (qj)2

]
zia

=
q̄S

m
CZ + (φikz + νjkθx

i
a − ν

j
kφ
yia)η̈k + vazi (25c)

for the ith accelerometer triad and using the jth gyroscope. The modal acceleration contributions introduced
by the measured angular accelerations are subsumed with those from the accelerometers on the right side.
Again, for short, small perturbation maneuvers, the regressor matrix is essentially constant and can be
computed once or updated at each time step for longer maneuvers.

IV.D. Kalman Filtering to Improve the Modal State Estimates

The three least-squares estimators discussed in Sections IV.A–IV.C estimate the modal displacements,
rates, accelerations, and their uncertainties at each sample time, depending on the measurements available.
These estimates, which are related by time derivatives, may be improved by enforcing kinematic constraints
via a Kalman filter. Similar to the least-squares estimators, the Kalman filter can be run either in a batch
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post-flight manner or recursively for real-time estimation. The Kalman filter setup is presented in this
section; more details on the filter equations and operation are in Ref. [16], for example.

The equations relating the modal states for each vibration mode can be written as a double integrator.
The discrete-time, state-space model is[

x1[n+ 1]

x2[n+ 1]

]
=

[
1 ∆t

0 1

][
x1[n]

x2[n]

]
+

[
1
2∆t2

∆t

]
u[n] +

[
1
2∆t2

∆t

]
w[n] (26a)

[
y1[n]

y2[n]

]
=

[
1 0

0 1

][
x1[n]

x2[n]

]
+

[
v1[n]

v2[n]

]
(26b)

The states x1 and x2 are the modal displacement and rate, the input u is the estimated modal acceleration,
the outputs y1 and y2 are the modal displacement and rate, ∆t is the sampling period, and n is the sample
index. The process noise w arises from uncertainty in the acceleration estimates, and the covariance obtained
from the least-squares analysis is used for the process noise covariance matrix Q. Similarly, measurement
noise v is due to uncertainty in the estimated modal displacements and rates, and the measurement noise
covariance matrix R consists of the covariances of the least-squares estimates. Because these covariances are
based on the data, the filter does not require tuning. The unsteady Kalman filter should be implemented,
rather than the steady-state filter, because the covariance matrices change at each time step.

In this setup, the estimated modal accelerations are integrated twice, and those predictions are corrected
using the estimated modal displacements and rates. This idea is similar to how inertial navigation systems
operate using accelerometer and GPS data, or how aircraft instrumentation errors are removed during a
data compatibility analysis [9, 17].

Depending on what information is available for a specific aircraft, the Kalman filter configuration can
be changed. For example, if only modal displacement and acceleration information are supplied, the filter
still performs well and the modal rates come as a byproduct of the filtering. If only modal displacement
or acceleration is supplied, significant high-frequency or low-frequency errors will result in the estimates,
respectively. For a post-flight analysis, deconvolution techniques [18] can be applied to help recover the
signals.

IV.E. Computing the Remnant Modeling Variables

A few final computations are needed to extract the remaining explanatory variables from the available
data and to compute the nondimensional coefficients for modeling using equation error. The remaining
explanatory variables are obtained by removing the modal contributions output by the Kalman filter from
the measurements to yield the mean-axis attitude, angular rates, and air-flow angles. This is done by
rearranging Eqs. (17), (19), (20), and (23), and then substituting data for the modal states.

The body-axis nondimensional force coefficients were estimated from accelerometer data in Section IV.C.
For post-flight analysis, these coefficients could be revised using the improved modal states from the Kalman
filter. The nondimensional aerodynamic force coefficients can also be computed in other coordinate frames,
including the stability axes as

CD = −CX cosα− CZ sinα (27a)

CL = −CZ cosα+ CX sinα (27b)

and in the wind axes as

CDw = CD cosβ − CY sinβ (28a)

CYw = CY cosβ + CD sinβ (28b)
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The nondimensional aerodynamic moment coefficients are computed as

Cl =
1

q̄Sb
[Ixxṗ− Ixz(pq + ṙ) + (Izz − Iyy)qr − LT ] (29a)

Cm =
1

q̄Sc̄

[
Iyy q̇ + (Ixx − Izz)pr + Ixz(p

2 − r2)−MT

]
(29b)

Cn =
1

q̄Sb
[Izz ṙ − Ixz(ṗ− qr) + (Iyy − Ixx)pq −NT ] (29c)

where standard simplifying assumptions were assumed [9,19]. The terms LT , MT , and NT represent moments
induced by the propulsion system.

The nondimensional generalized force coefficients driving the vibration modes are calculated by rearrang-
ing Eq. (9) as

CQi =
mi

q̄Sc̄

[
η̈i + 2ζiωiη̇i + ω2

i∆ηi
]

(30)

and substituting the modal states and modal constants.
At this point, all the relevant modeling data have been obtained, and an equation-error analysis may

proceed in either a batch or real-time fashion.

IV.F. Practical Aspects

Errors in the measurements and other data used for the estimation impact the accuracy of the aeroelastic
stability and control derivatives. Reference [20] investigated how errors in geometry, mass distribution, and
flight condition impact the parameter estimates for rigid-body models. For flexible aircraft, the modal pa-
rameters and mode shapes can introduce additional errors into the stability and control derivative estimates.

The modal frequencies and damping ratios implemented in the analysis can be modeled as the true value
and an error

ω̂i = ωi + ω̃i (31a)

ζ̂i = ζi + ζ̃i (31b)

Error in the modal masses mi is not considered because in this work the mode shapes were scaled so that
the modal masses were unity. Substituting these values into the generalized force coefficients from Eq. (30)
results in

ĈQi =
mi

q̄Sc̄

[
η̈i + 2ζiωiη̇i + ω2

i ηi
]

+
mi

q̄Sc̄

[
2(ζiω̃i + ζ̃iωi + ζ̃iω̃i)η̇i + (2ωiω̃i + ω̃2

i )ηi

]
(32)

where the first bracketed quantity on the right side is the true value and the second bracketed quantity is a
bias. Although excellent fits can be obtained for this data, estimates of the modal parameters

ĈQiηi
= CQiηi

+
mi

q̄Sc̄

[
2ωiω̃i + ω̃2

i

]
(33a)

ĈQiη̇i
= CQiη̇i

+ 2
mi

q̄Sc̄

[
ζiω̃i + ζ̃iωi + ζ̃iω̃i

]
(33b)

contain additional terms due to the errors and therefore are biased. Damping ratio errors only bias the modal
damping term, whereas damping ratios and frequency errors impact both the modal stiffness and damping.
The other parameters are not affected because these errors are proportional to ηi and η̇i. When assembled
into linear state-space models [10], the biases in these estimated derivatives will alter the frequency and
damping of the eigenvalues.

Although CQi can be used for estimation, it is preferable to instead use η̈i for the reasons just discussed.
Rearranging Eq. (9) and expanding in terms of stability and control derivatives, the least-squares problem
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becomes

η̈i =
mk

q̄Sc̄
CQi − ω2

i∆ηi − 2ζiωiη̇i

=
q̄Sc̄

mi

[
CQiα∆α+ CQiq

qc̄

2V0
+ CQiηk

∆ηk + CQiη̇k

∆η̇k c̄

2V0
+ CQiδ∆δ

]
k 6=i

+

[
q̄Sc̄

mi
CQiηi

− ω2
i

]
∆ηi +

[
q̄Sc̄

mi
CQiη̇i

c̄

2V0
− 2ζiωi

]
∆η̇i (34)

The bracketed terms that multiply ∆ηi and η̇i in the above equation are the equivalent −ω̄2
i and −2ζ̄iω̄i

terms, which combine the air-off and air-on effects. A similar formulation has been used with output error
when FEM data was not available [4, 5]. If the air-off contributions are available from a FEM or GVT,
they can be subtracted from these equivalent estimates to obtain the air-on contributions. Performing the
estimation in this manner introduces the FEM data at the end of the estimation and stops associated errors
from propagating throughout the analysis, as in the case when estimating CQi directly.

Similarly for other computations, measured data should not be altered until it must, to safeguard against
propagating errors through the analysis. For example, computing the moment coefficient Cm requires dif-
ferentiating the mean-axis pitch rate q. Now once the Kalman filter produces estimates of η̇, the modal
contributions can be subtracted from the gyroscope measurement to yield q, which could then be differen-
tiated to produce q̇. However, errors in the estimated η̇ will be introduced and magnified in this way, and
then will degrade the accuracy of Cm. These errors will in turn cloud the modeling analysis and will bias
the pitching moment derivatives. A more accurate procedure is to first differentiate the measured gyroscope
data, and then subtract contributions from η̈, which are more accurate themselves, to obtain q̇ and Cm.

Errors in the mode shapes of the vibration modes used to estimate the modal states also affect the
analysis. When many sensors are used in this process, the estimates become robust to noise, low excitations,
and position errors of the sensors. Although small errors are negligible, large systematic errors in the
mode shapes, for example incorrect values for material properties within the FEM, will yield inaccurate
basis functions for extracting the modal states and the modal expansion in Eq. (10) will exhibit slower
convergence. An analyst may be tempted to compensate by increasing the number of modes included in
the estimation, but this action will bias the modal state estimates and supply kinematically inconsistent
information to the Kalman filter. Therefore, effort should be made to develop an accurate FEM, and care
should be taken in designing experiments and selected modes to include in the analysis.

V. X-56A Aircraft and Flight Tests

V.A. Aircraft

The X-56A is a tailless, flying-wing aircraft with swept-back wings. Figure 2 shows a photo of the X-56A
flying over NASA Armstrong Flight Research Center. The aircraft has a 28 ft wingspan and weighs between
200 and 480 lbf, depending on fuel, ballast, and configuration. Two JetCat P-400 engines, each capable
of providing 90 lbf of thrust, are mounted above the aft section of the center body. The landing gear are
arranged in a fixed, tricycle configuration.

The wings have a high aspect ratio and include stationary winglets installed at the wing tips. There are
two control surfaces along the trailing edge of the center body, and four control surfaces along the trailing
edge of each wing. The ten total control surfaces are used in different combinations to generate aerodynamic
control moments, alleviate gust responses, and suppress aeroelastic vibrations.

For more information, Refs. [1, 5, 21–23] describe the conceptual design of the aircraft, NASA research
directions, development of the FEM and the GVT experiment, control design, and identification results from
flight tests with the stiff-wing configuration.

V.B. Instrumentation

The X-56A was equipped with a large number of sensors to study its aeroelastic characteristics. A
planform of the aircraft showing naming conventions and locations for a subset of the sensors used in this
paper is shown in Fig. 3.
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Figure 2. X-56A in flight over NASA Armstrong Flight Research Center (credit: NASA / Jim Ross)
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Figure 3. X-56A planform with selected sensor and control surface locations

13 of 26

American Institute of Aeronautics and Astronautics



The trailing-edge control surfaces are first designated with “bf” for body flap or “wf” for wing flap.
The wing flaps are additionally annotated with a number, which increases from wing root to wing tip.
The designations end with “l” or “r” for left or right. All control deflections are considered positive with
trailing-edge down deflection. Control surface commands were recorded, as well as measurements from string
potentiometers measuring the actual control surface deflections.

The X-56A is instrumented with 18 accelerometers: four longitudinal accelerations, three lateral accel-
erations, and eleven vertical accelerations. The embedded GPS/INS (EGI) system contains three of these
accelerometers, and is located near the nominal center of mass. The center-body and wing accelerometers
are designated first with an “l” for left wing, “c” for center body, or “r” for right wing; then “w” for winglet,
“o” for outboard, or “m” for midspan; followed by “f” for forward, or “a” for aft. The last character is “x,”
“y,” or “z” and designates the aircraft body axis in which the instrument is aligned.

The EGI also includes three-axis gyroscopes for measuring the body-axis angular rates, and computes
Euler angles for the orientation. Additional high-rate gyroscopes are installed in the center body. Air data
vanes on the boom protruding from the aircraft nose provided measurements of angle of attack and flank
angle. The nose boom also contained pressure ports, which were combined with temperature and pressure
sensor readings to compute airspeed. Differential GPS provided position and inertial velocity information.

For strain data, the X-56A is instrumented with 24 strain gauges. These sensors are a combination of
bending gauges and rosettes, and are located around the center body and wing root, primarily for computing
wing root bending moments. FOSS strands are also installed along both wings but not yet operational for
estimation purposes.

A computer-aided design (CAD) model and a FEM [22] of the X-56A were available. Measurements
of fuel flow were combined with the CAD model and measured weights to model the aircraft mass, center
of mass, and inertia matrix during flight. The FEM was used to tabulate the modal frequencies and the
vibration mode shapes at 17 fuel weight cases. GVT data were used to obtain damping ratios for the modes
at the full fuel and empty fuel conditions.

VI. Flight Test Results

This section presents estimation results for one flight test maneuver of the X-56A airplane. For this
maneuver, the aircraft was trimmed for straight and level flight at a low angle of attack and nominal
altitude. The fuel was at 63% of capacity and the airspeed was at 67% of the predicted flutter boundary.
The aircraft was flying with feedback control active; however, the excitation input and the manner in which
it was applied enabled the estimation of the open-loop aerodynamic model. The analysis presented here was
performed post-flight, but similar analyses could be conducted during flight tests in the future.

Once the airplane was on condition, a set of orthogonal optimized multisine inputs were added to the
actuator commands to move the control surfaces as sets of symmetric pairs. These inputs were sums of
harmonic sinusoids that contained uniform power to excite the short period and first symmetric vibration
mode. Phase angles for the sinusoids were optimized for minimal relative peak factor to elicit small per-
turbation responses suitable for linear modeling. The harmonic frequencies were allocated to the different
control surface pairs in an alternating manner so that each input was orthogonal to the others in both the
time and frequency domains. Running these perturbation inputs on multiple control surfaces simultaneously
over a frequency bandwidth of interest and with a specified power spectra resulted in excellent aeroelastic
modeling data obtained in an efficient manner. For more information on multisine inputs and flight test
examples, see Refs. [9, 24].

Control surface deflections for one maneuver are shown in Fig. 4. These time series were computed from
potentiometer measurements as

δ∗s =
1

2
(δ∗r + δ∗l) (35)

where ∗ stands for either the body flaps or a pair of wing flaps, and where “s” indicates symmetric movement.
These inputs appear different from each other and were designed to be orthogonal with pairwise correlation
coefficients equal to 0. There is a small amount of control activity in the data, for example a low-frequency
oscillation in δbfs to reject the phugoid response, or how δwf2s and δwf3s were ganged together to act as a
conventional elevator. However, the highest correlation was 0.15, which is small compared to 0.9 (in absolute
value) necessary for accurate modeling [9]. This maneuver was relatively short and incurred a 1.8% change
in fuel weight with 0.14% and 0.04% changes in mass and inertia. From analysis with simulation data, these
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changes had a negligible effect on the structural dynamics, flight dynamics, and system identification results.

δbfs

δwf1s

δwf2s

δwf3s

δwf4s

Time

Figure 4. Symmetric control deflections

Measured responses are shown in Fig. 5 for a small subset of the onboard sensors. The responses were
low in amplitude but had good signal-to-noise ratios. Airspeed and dynamic pressure varied less than 1.2%
and 1.9% from the reference values, respectively, and was approximated as constants in the analysis. Using
spectral analysis, it was observed that the apparent higher noise levels in aroazz (sensor installed near the
wingtip) relative to aegiz (sensor installed near the mass center) was due to the presence of many higher-
frequency structural modes in the data. The frequency spectrum for this measurement is shown in Fig. 6
with annotations for the corresponding FEM vibration mode numbers (mentioned next) and general ranges.

For the analysis of this maneuver, five vibration modes were significant. These mode shapes are depicted
in Fig. 7 using the FEM data, where the gray and black markers represent the undeformed and deformed
aircraft, respectively. The deformations shown are exaggerated to different degrees for each mode to help
convey the mode shape. The mode numbering corresponded to the FEM, where the first six modes were the
rigid-body degrees of freedom. Mode 7 is the first symmetric wing bending (SW1B) mode, where the wings
and nose bend down while the aft section of the center body bends up. Mode 8 is the anti-symmetric first
bending (AW1B) mode, where the wings bend in opposite directions and the centerbody rolls to one side.
Mode 9 is the first symmetric wing torsion (SW1T) mode and includes symmetric twisting of the wings.
Mode 10 is the symmetric wing fore-aft (SWFA) mode, wherein the wings bend forwards and backwards.
Mode 14 is the symmetric winglet lateral (SWL) mode and involves a symmetric lateral bending of the
winglets in addition to first bending and first torsion of the wings, as well as first vertical bending of the
airdata boom. Many other modes were evident in the flight test data but did not significantly impact this
analysis and were therefore not estimated. The neglected modes 11–13 over this bandwidth are the first
anti-symmetric torsion, and both symmetric and anti-symmetric vibrations of the main landing gear. The
multisine inputs used in this maneuver were intended to only excite the short period and SW1B modes; the
presence of the other modes are due to other sources that may include aeroelastic coupling, pilot and control
law inputs, ambient turbulence, and initiation or cessation of the excitation inputs.

The accelerometer data were first examined. Estimated time histories and frequency spectra for CZ and
η̈ are shown in Fig. 8. The CX and CY coefficients were also estimated but are not shown because the CZ
coefficient was of primary interest in this paper. Additionally, the uncertainty estimates are not shown in
Fig. 8(a) for clarity. A different y-axis range is used on each plot so that signals can be distinguished. How-
ever, CZ and η̈7 were much larger in amplitude than the other modal accelerations because these multisine
inputs were designed to excite the short period and SW1B modes, although other resonances are present
in the data. If these additional modes (AW1B, SW1T, SWFA, and SWL) were not included in the estima-
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Figure 5. Measurements from a subset of onboard sensors
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Figure 6. Spectrum of accelerometer data
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(a) Mode 7: first symmetric wing bending (SW1B)

(b) Mode 8: first anti-symmetric wing bending (AW1B)

(c) Mode 9: first symmetric wing torsion (SW1T)

(d) Mode 10: symmetric wing fore-aft (SWFA)

(e) Mode 14: symmetric winglet lateral (SWL)

Figure 7. Mode shapes for the X-56A (FEM configuration 24611, version 10.424 dev, 50% fuel) — gray markers are
the undeformed grid points and black markers are the corresponding deformed points
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tion, their contributions would be attributed to other retained signals in the least-squares estimation. These
modes were much more important for the strain data, discussed next, than the accelerometer data. As shown
in Fig. 8(b), the vibration modes have resonances that are separated in frequency, but also have significant
responses at other frequencies, especially the lower frequencies. The higher-frequency content in the η̈8 esti-
mates is due to the asymmetric wing first torsion mode; however there was not enough data information to
accurately extract this mode. Coefficients of determination R2 quantifying fits to relevant accelerometer data
(not shown) ranged between 0.92 to 0.98, indicating excellent fits to the measured accelerometer data. The
small errors are attributed to neglected higher-frequency vibrations and to measurement noise. Examination
of the regressor matrix X formed using Eq. (25) indicated that it was well-conditioned and that explanatory
variables had low pairwise correlations.

The strain data were next examined. Because strain sensors register only modal displacements, they are
more sensitive to neglected structural modes than the accelerometers. It was for this reason that several
higher-frequency modes were needed to obtain accurate modal displacement estimates. Time histories and
frequency spectra for η estimates are shown in Fig. 9. Again the axes in these plots are scaled to distinguish
between the signals, rather than for comparing their amplitudes, and the SW1B mode is significantly larger
than the other modes due to the input excitation. Because the excitation was relatively low in frequency but
many higher-frequencies are present in the data, the higher-frequency modal displacements are significantly
correlated with the bending mode, as can be seen from Fig. 9. This had an impact on modeling and is
discussed later. Values of R2 for the measured and modeled strain dat were between 0.72 and 0.98, which
indicated good fits. The correlation matrix from Eq. (15) was well-conditioned and no significant correlations
among the data were observed.

The Kalman filter estimated modal displacements, rates, and accelerations from the estimated modal
displacement and acceleration data just discussed. Only one set of airdata measurements were available
and although there were two gyroscopes, one was recorded at a slower rate and did not contain significant
contributions from the vibrations. Consequently, modal rates were not initially estimated using least squares,
but were available as outputs from the Kalman filter. Relatively small adjustments were made by the filter
to the original modal displacement data.

An examination of the estimated explanatory variables indicated that α was highly correlated with the
η9, η10, and η14. This was because the SW1T, SWFA, and SWL modes have a low-frequency coupling
with α, but the higher-frequency resonances were not sufficiently excited to lower the correlations. In other
maneuvers that excited these higher-frequency modes, these correlations were significantly lower. Although
the SW1B mode was specifically targeted in this maneuver, the correlation of α and η7 was still 0.85. This
was to be expected because the SW1B mode is lightly damped and the forcing from α was lower in frequency,
where the dynamics are passed without much gain and phase distortion. As a result of these correlations,
only the short period and SW1B modes were modeled for parameter estimation, and the only modal states
used as explanatory variables were η7 and η̇7. This, however, was the original intention for this maneuver.
Figure 10 illustrates pairwise correlations for the retained regressors. Except as already discussed, pairwise
correlations were not significant.

Dependent modeling data and model fits to that data in the frequency domain are shown in Fig. 11 using
the entire maneuver record. For comparison and discussed more next, fits to both CQ7

and η̈7 are shown.
The fits ranged in R2 from 0.96 to 0.97, indicating an excellent fit. Minor errors in the lowest frequencies for
CL and CQ7 are due to phugoid excitation, as corroborated by the low-frequency oscillation in the inboard
flaps seen in Fig. 4.

Estimated stability and control derivatives are shown in Fig. 12 with 2σ uncertainty ranges. For compar-
ison, predictions obtained using the ZAERO software for the 50% fuel case [25] are shown in green. Values
generally agreed between the predicted and identified values, although there are discrepancies, particularly
in the q derivatives. The term CLq , is not typically estimated at low angles of attack because it is small
with low sensitivity. The same derivatives for CQ7

are shown from both CQ7
data and η̈7 data. These values

differed less than 1%, which indicated that the FEM and the reconstructions of η7 and η̇7 did not contain
significant error for the SW1B mode.

Real-time estimates obtained using the recursive Fourier transform and equation error in the frequency
domain are shown for a few parameters in Fig. 13 with 2σ uncertainties. Estimates began soon after the
excitation started, and were computed at regular intervals. In the beginning of the maneuver, the parameter
estimates vary wildly and had larger uncertainties. As more information was recorded, the estimates quickly
converged near their final values, shown in Fig. 12.
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Figure 8. Estimated vertical force coefficient and modal accelerations from accelerometer and gyroscope data
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Figure 9. Estimated modal displacements from strain data
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Figure 10. Pairwise correlation magnitudes for the retained explanatory variables
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Figure 11. Model fits to frequency-domain data
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Figure 12. Stability and control derivative estimates from numerical prediction and from flight test data
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Figure 13. Real-time estimates for a subset of parameters
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To illustrate the identified dynamics, the estimated stability and control derivatives were assembled with
other data into a linear state-space model of the form

α̇
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η̇7

η̈7

 =


− q̄S
mV CLα 1− q̄S

mV
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 (36)

It is important to note that coupling terms for aeroelastic aircraft models can be significant and truncating
the model, as in Eq. (36), can significantly affect the dynamics [10, 26]. As illustrated by the selected
Bode magnitudes shown in Fig. 14, the eigenvalues of the system represented two oscillatory modes with low
damping. Phasor diagrams illustrating the eigenvectors for the two modes are shown in Fig. 15. Although the
normal relationship between α and q is present in the short period mode, η7 and η̇7 participate significantly
in the response. This underscores that the traditional rigid-body modes are still present for flexible aircraft,
but are now coupled with the structural degrees of freedom. The SW1B mode is mostly the oscillation in
η̇7, but also contains terms from the other states.

α1

δwf4s

q1

δwf4s

aroazz

δwf4s

Frequency

ǫ1

δwf4s

Frequency

Figure 14. Subset of Bode magnitude plots from the identified model

VII. Conclusions

This paper presented a method for performing batch or real-time parameter estimation for flexible air-
craft. Knowledge of the air-off, in-vacuo mode shapes was leveraged to estimate displacements, rates, and
accelerations of generalized modal coordinates, as well as nondimensional aerodynamic force coefficients,
from onboard sensor measurements using least squares. Kinematic consistency was enforced using a Kalman
filter, which improved the modeling data. Modeling variables were then computed and applied to parameter
estimation using equation error in the frequency domain, which can be applied in a post-flight or real-time
framework. This method was demonstrated with flight test data for the X-56A aeroelastic demonstrator
flying under closed-loop control, and had good results for the short period and symmetric wing first bending
modes, which were similar to previous numerical predictions.
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Figure 15. Phasor diagrams using eigenvectors from the identified model

The cost to use this method is the extra analyses required to develop an accurate FEM for calculating
mode shapes and modal constants. This requirement is in addition to obtaining accurate values for stan-
dard mass and geometry parameters, such as the inertia tensor. Afterwards, numerous redundant sensors,
specifically strain sensors and accelerometers, are needed to observe the modes of interest. Extra computing
power is also needed to process all the data and at faster sampling rates than typically used for traditional
aircraft. Due to the complexity of the method, there is a sensitivity to errors in the specified mode shapes
and other parameters that requires a careful analysis.

However, this method enables many statistical tools for determining model structure and diagnosing
data problems. In addition, accurate parameter estimates are computed quickly without iteration or the
need for starting values. Previously, modeling for flexible aircraft was restricted to output-error techniques
because the generalized modal displacements, rates, and accelerations were not directly measured, resulting
in laborious analyses. This analysis can help shorten flight tests or can be run continuously to update flutter
predictions. In addition, the modal estimation technique used here can be implemented in real time for
modal-based control designs to alleviate gusts and suppress flutter.
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